Representations of Monomiality Principle with Sheffer-type Polynomials and Boson Normal Ordering

نویسنده

  • P Blasiak
چکیده

We construct explicit representations of the Heisenberg-Weyl algebra [P, M ] = 1 in terms of ladder operators acting in the space of Sheffer-type polynomials. Thus we establish a link between the monomiality principle and the umbral calculus. We use certain operator identities which allow one to evaluate explicitly special boson matrix elements between the coherent states. This yields a general demonstration of boson normal ordering of operator functions linear in either creation or annihilation operators. We indicate possible applications of these methods in other fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monomiality principle, Sheffer-type polynomials and the normal ordering problem

We solve the boson normal ordering problem for ( q(a†)a+ v(a†) )n with arbitrary functions q(x) and v(x) and integer n, where a and a† are boson annihilation and creation operators, satisfying [a, a†] = 1. This consequently provides the solution for the exponential e †)a+v(a†)) generalizing the shift operator. In the course of these considerations we define and explore the monomiality principle...

متن کامل

Boson Normal Ordering via Substitutions and Sheffer-type Polynomials

We solve the boson normal ordering problem for (q(a)a + v(a)) with arbitrary functions q and v and integer n, where a and a are boson annihilation and creation operators, satisfying [a, a] = 1. This leads to exponential operators generalizing the shift operator and we show that their action can be expressed in terms of substitutions. Our solution is naturally related through the coherent state ...

متن کامل

Sheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials

The Sheffer polynomials and the monomiality principle, along with the underlying operational formalism, offer a powerful tool for investigation of the properties of a wide class of polynomials. We present, within such a context, a self-contained theory of such familiar systems of polynomials as the Euler, Bernoulli, Bessel and other clasical polynomials and show how the derivation of some of th...

متن کامل

Monomiality principle and related operational techniques for orthogonal polynomials and special functions

Abstract— The concepts and the related aspects of the monomiality principle are presented in this paper to explore different approaches for some classes of orthogonal polynomials. The associated operational calculus introduced by the monomiality principle allows us to reformulate the theory of Hermite, Laguerre and Legendre polynomials from a unified point of view. They are indeed shown to be p...

متن کامل

Associated Laguerre Polynomials: Monomiality and Bi–Orthogonal Functions

We exploit the concepts and the formalism associated with the principle of monomiality to derive the ortogonality properties of the associated Laguerre polynomials. We extend a recently developed technique of algebraic nature and comment on the usefulness of the proposed method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005